SET-XP[®] High-Strength Anchoring Adhesive for Cracked and Uncracked Concrete

SET-XP® is a 1:1 two-component, high-solids, epoxy-based anchoring adhesive formulated for optimum performance in both cracked and uncracked concrete. SET-XP® adhesive has been rigorously tested in accordance with ICC-ES AC308 and 2009 IBC requirements and has proven to offer increased reliability in the most adverse conditions, including performance in replaced constant and account of the conditions.

accordance with ICC-ES AC308 and 2009 IBC requirements and has proven to offer increased reliability in the most adverse conditions, including performance in cracked concrete under static and seismic loading. SET-XP® adhesive is teal in color in order to be identified as a high-performance adhesive for adverse conditions. Resin and hardener are dispensed and mixed simultaneously through the mixing nozzle. SET-XP® adhesive exceeds the ASTM C881 specification for Type I and Type IV, Grade 3, Class C epoxy.

USES: When SET-XP® adhesive is used with all threaded rod or rebar, the system can be used in tension and seismic zones where there is a risk of cracks occurring that pass through the anchor location. It is also suitable for uncracked concrete conditions.

CODES: ICC-ES ESR-2508; City of L.A. pending; Florida FL 11506.5 NSF/ANSI Standard 61 (216 in 2/1000 gal). The load tables list values based upon results from the most recent testing and may not reflect those in current code reports. Where code jurisdictions apply, consult the current reports for applicable load values.

APPLICATION: Surfaces to receive epoxy must be clean. The base-material temperature must be 50° F or above at the time of installation. For best results, material should be 70–80° F at the time of application. Cartridges should not be immersed in water to facilitate warming. To warm cold material, the cartridges should be stored in a warm, uniformly-heated area or storage container for a sufficient time to allow epoxy to warm completely. Mixed material in nozzle can harden in 5–7 minutes at a temperature of 40° F or above.

DESIGN EXAMPLE: See pages 231, 235–237

INSTALLATION: See pages 70–71

SHELF LIFE: 24 months from date of manufacture in unopened sideby-side cartridge.

STORAGE CONDITIONS: For best results, store between 45–90° F. To store partially used cartridges, leave hardened nozzle in place. To re-use, attach new nozzle.

COLOR: Resin – white, hardener – black-green. When properly mixed, SET-XP adhesive will be a uniform teal color.

CLEAN UP: Uncured material – Wipe up with cotton cloths. If desired, scrub area with abrasive, waterbased cleaner and flush with water. If approved, solvents such as ketones (MEK, acetone, etc.), lacquer thinner or adhesive remover can be used. DO NOT USE SOLVENTS TO CLEAN ADHESIVE FROM SKIN. Take appropriate precautions when handling flammable solvents. Solvents may damage surfaces to which they are applied. Cured Material – chip or grind off surface.

TEST CRITERIA: Anchors installed with SET-XP® adhesive have been tested in accordance with ICC-ES's Acceptance Criteria for Post-Installed *Adhesive Anchors in Masonry Elements (AC58)* and *Adhesive Anchors in Concrete Elements (AC308)* for the following:

- Seismic and wind loading in cracked and uncracked concrete and uncracked masonry
- Static tension and shear loading in cracked and uncracked concrete and uncracked masonry
- Horizontal and overhead installations

PROPERTYConsistency Glass transitio

Glass transition temperature Bond strength (moist cure) Water absorption Compressive yield strength Compressive modulus Gel time

- Long-term creep at elevatedtemperatures
- Static loading at elevatedtemperatures
- · Damp holes
- · Freeze-thaw conditions
- Critical and minimum edge distance and spacing

TEST METHOD RESULTS

ASTM C881 Passed, non-sag
ASTM E1356 155°F
ASTM C882 3,742 psi at 2 days
ASTM D570 0.10%
ASTM D695 14,830 psi
ASTM D695 644,000 psi
ASTM C881 49 minutes

CHEMICAL RESISTANCE: Very good to excellent against distilled water, in-organic acids and alkalis. Fair to good against organic acids and alkalis, and many organic solvents. Poor against ketones. For more detailed information visit our website or contact Simpson Strong-Tie.

SET-XP Cartridge System

Model No.	Capacity ounces (cubic inches)	Cartridge Type	Carton Quantity	Dispensing tool(s)	Mixing Nozzle
SET-XP10	8.5 (16.2)	single	12	CDT10S	
SET-XP22	22 (39.7)	side-by-side	10	EDT22S EDTA22P EDT22CKT	EMN22i
SET-XP56	56 (101.1)	side-by-side	6	EDTA56P	

- 1. Cartridge estimation guides are available on pages 48-51.
- 2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available on pages 72–77.
- Use only appropriate Simpson Strong-Tie mixing nozzle in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair epoxy performance.

Cure Schedule

Base M Tempe		Gel Time (mins.)	Cure Time (hrs.)
٥F	°C	(1111115.)	(1115.)
50	10	75	72
60	16	60	48
70	21	45	24
90	32	35	24
110	43	20	24

For water-saturated concrete, the cure times are doubled.

SUGGESTED SPECIFICATION: Anchoring adhesive shall be a two-component high-solids, epoxy-based system supplied in manufacturer's standard cartridge and dispensed through a static-mixing nozzle supplied by the manufacturer. The adhesive anchor shall have been tested and qualified for performance in cracked and uncracked concrete per ICC-ES AC308. Adhesive shall be SET-XP® adhesive from Simpson Strong-Tie, Pleasanton, CA. Anchors shall be installed per Simpson Strong-Tie instructions for SET-XP epoxy adhesive.

ACCESSORIES: See pages 72–77 for information on dispensing tools, mixing nozzles and other accessories.

$\mathsf{SET} extsf{-XP}^\circ$ High-Strength Anchoring Adhesive for Cracked and Uncracked Concrete

SET-XP® Epoxy Anchor Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete1

Characteristic	Symbol	Units	Nominal Anchor Diameter (in.) / Rebar Size							
Gilaracteristic		Syllibol	Ullits	3/8 / #3	1/2 / #4	5/8 / #5	3/4 / #6	7/8 / # 7	1 / #8	11/4 / #10
	formation									
Drill Bit Diameter	d _{hole}	in.	1/2	5⁄8	3/4	7/8	1	11/8	1%	
Maximum Tightening Torque	Tinst	ft-lb	10	20	30	45	60	80	125	
Permitted Embedment Depth Range ²	Minimum	h _{ef}	in.	23/8	23/4	31/8	31/2	33/4	4	5
Permitted Embedment Depth hange	Maximum	h _{ef}	in.	71/2	10	121/2	15	171/2	20	25
Minimum Concrete Thickness		h _{min}	in.		h _{ef} + 5d ₀					
Critical Edge Distance		Cac	in.	3 x h _{ef}						
Minimum Edge Distance		Cmin	in.			1:	3/4			2¾
Minimum Anchor Spacing	Smin	in.	3						6	

- 1. The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308.
- 2. Minimum and maximum embedment depths are are listed in accordance with ICC-ES AC308 requirements.

SET-XP Epoxy Anchor Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete^{1,12}

SEI-XP Epoxy	Anchor Tension Strength Design Data	i for Threade	d Rod in	Norma	I-Weight	Concret	e1,12	20 EV		the	load table icons
	Characteristic		Symbol	Units		N	lominal A	nchor Dia	meter (in	.)	
	Gilalacieristic		,		3/8	1/2	5/8	3/4	7/8	1	11/4
		Steel	Strength in	Tensio	n						
	Minimum Tensile Stress Area		Ase	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel - ASTM A193	, Grade B7			9,750	17,750	28,250	41,750	57,750	75,750	121,125
Threaded	- ASTM F1554, Grade 36	1			4,525	8,235	13,110	19,370	26,795	35,150	56,200
Rod	- Type 410 Stainless (ASTM A193, Grad		N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
1.00	- Type 304 and 316 Stainless (ASTM A1 and B8M)	93, Grade B8		u	4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor - Steel Failure	φ					0.75^{9}				
	Concrete Brea	kout Strength	in Tension	(2,500	$psi \le f'_c$	≤ 8,000 ps	si) ¹⁵				
	ctor - Uncracked Concrete		k _{uncr}	_				24			-
Effectiveness Fa	ctor - Cracked Concrete		k _{cr}					17			
Strength Reduct	Strength Reduction Factor - Breakout Failure							0.6511			
		trength in Ten	sion (2,50	0 psi ≤ 1					,		
Temp. Range 1	Characteristic Bond Strength		Tk,uncr	psi	1,510	2,250	2,075	1,905	1,730	1,555	1,205
for Uncracked	Permitted Embedment Depth Range	Minimum	h _{ef}	in	2%	23/4	31/8	31/2	33/4	4	5
Concrete ^{2,4,5}		Maximum	-		71/2	10	121/2	15	171/2	20	25
Temp. Range 1	Characteristic Bond Strength ^{8,13,14}	$ au_{k,cr}$	psi	1,165	995	855	760	700	675	675	
for Cracked Concrete ^{2,4,5}	Permitted Embedment Depth Range	Minimum	h _{ef}	in	3	4	5	6	7	8	10
	101	Maximum	-	<u> </u>	71/2	10	121/2	15	171/2	20	25
Temp. Range 2	Characteristic Bond Strength ^{6,8}	In at 1	τ _{k,uncr}	psi	780	1,160	1,070	980	895	800	625
for Uncracked Concrete ^{3,4,5}	Permitted Embedment Depth Range	Minimum	- h _{ef}	in	23/8	23/4	31/8	31/2	33/4	4	5
	Observatoristis David Observatoris 8 12 14	Maximum	-	:	7½	10	121/2	15	17½	20	25
Temp. Range 2	Characteristic Bond Strength ^{6,8,13,14}	B # C C C C C C C C C C C C C C C C C C	Tk,cr	psi	600	515	440	390	360	350	350
for Cracked Concrete ^{3,4,5}	Permitted Embedment Depth Range	Minimum	h _{ef}	in	3 7½	10	5	6 15	7	8	10
Concrete		Maximum	- Dadustia	. Fasta			121/2		171/2	20	25
Church out b Dodgood	Bond Strength in Tension –		1 Keauctio	n Facto	rs for Con	tinuous 5		.65 ¹⁰			
	ion Factor - Dry Concrete ion Factor - Water-saturated Concrete	φdry, ci	+ = -					.6510 .4510	-		-
	r for Water-saturated Concrete ⁷	φsat, ci).57	-		-
Additional Facto	Bond Strength in Tension	Ksat, ci	th Doducti	ion East	are for De	riodio Cn					
Strongth Paduct	ion Factor - Dry Concrete		iii neuucii	IUII FACI	UIS IUI PE	induic Sp		.55 ¹⁰			
								.45 ¹⁰			
	r for Water-saturated Concrete ⁷	φsat, pi	<u> </u>).48			
Muullional Facto	ו וטו עעמוכו־5מונוומוכט טטווטוכוכי	K _{sat, pi}						J. 4 0			

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- 2. Temperature Range 1: Maximum short-term temperature of 110°F (43°C). Maximum long-term temperature of 75°F (24°C).
- 3. Temperature Range 2: Maximum short-term temperature of 150°F (66°C). Maximum long-term temperature of 110°F (43°C).
- 4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperature are constant temperatures over a significant time period.
- For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.
- 7. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by $K_{sat}.$

C-SAS-2012 @2012 Simpson Strong-Tie Company Inc.

- 8. For anchors installed in overhead and subjected to tension resulting from sustained loading, multiply the value calculated for N_a according to ICC-ES AC308 by 0.75.
- The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.

- 10.The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 11. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of φ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ .
- 12. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.
- 13.For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for % anchors must be multiplied by $\alpha_{N,seis}=0.80$.
- 14.For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by $\alpha_{N,seis}$ = 0.92
- 15.The values of f'_C used for calculation purposes must not exceed 8000 psi (55.1 MPa) for uncracked concrete. The value of f'_C used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

High-Strength Anchoring Adhesive for Cracked and Uncracked Concrete

SET-XP® Epoxy Anchor Tension Strength Design Data for Rebar in Normal-Weight Concrete^{1,12}

See page 13 for an explanation of the load table icons

	Characteristic		Symbol	Units				Rebar Siz	е		
	Gilaracteristic		Syllibul	OIIII	#3	#4	#5	#6	#7	#8	#10
		Steel St	rength in	Tension	1						
	Minimum Tensile Stress Area		Ase	in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.23
Rebar	Tension Resistance of Steel - Rebar (ASTM)	A615, Grade 60)	N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700
	Strength Reduction Factor - Steel Failure		φ	_				0.659			
		kout Strength ir		(2,500	$psi \le f'_c \le$	8,000 ps	i) ¹⁵				
	ctor - Uncracked Concrete		k _{uncr}					24	_		
Effectiveness Fa	ctor - Cracked Concrete		k _{cr}	_				17			
Strength Reduct	ion Factor - Breakout Failure		φ	_				0.6511			
		trength in Tensi	on (2,500	psi ≤ f'	$_{\rm C} \le 8,000$	psi) ¹⁵					
Temp. Range 1	Characteristic Bond Strength ⁸		$ au_{k,uncr}$	psi				1600			
for Uncracked	Permitted Embedment Depth Range	Minimum	h _{ef}	in	23/8	23/4	31/8	31/2	33/4	4	5
Concrete ^{2,4,5}		Maximum	riei		71/2	10	121/2	15	171/2	20	25
Temp. Range 1 for Cracked	Characteristic Bond Strength ^{8,13,14}		$ au_{k,cr}$	psi	1,165	995	855	760	700	675	675
	Permitted Embedment Depth Range	Minimum Maximum	h _{ef}	in	3	4	5	6	7	8	10
Concrete ^{2,4,5}		riei		71/2	10	121/2	15	171/2	20	25	
Temp. Range 2	Characteristic Bond Strength ^{6,8}	$ au_{k,uncr}$	psi	825							
for Uncracked	Permitted Embedment Depth Range	Minimum	h _{ef}	in	23/8	23/4	31/8	31/2	33/4	4	5
Concrete ^{3,4,5}		Maximum	riei	-	71/2	10	121/2	15	171/2	20	25
Temp. Range 2	Characteristic Bond Strength ^{6,8,13,14}		$ au_{k,cr}$	psi	600	515	440	390	360	350	350
for Cracked	Permitted Embedment Depth Range	Minimum	h _{ef}	in	3	4	5	6	7	8	10
Concrete ^{3,4,5}		Maximum			71/2	10	121/2	15	171/2	20	25
	Bond Strength in Tension -	Bond Strength I	Reduction	Factor	s for Cont	inuous Sp					
	ion Factor - Dry Concrete	Фdry, ci	_ =					.6510			
Strength Reduct	φsat, ci	_					4510				
Additional Facto	r for Water-saturated Concrete ⁷	K _{sat, ci}	_).57			
	Bond Strength in Tension	- Bond Strength	Reductio	n Facto	rs for Pe	riodic Spe					
	Strength Reduction Factor - Dry Concrete $\phi_{dry, pi}$					0.5510					
Strength Reduct	Strength Reduction Factor - Water-saturated Concrete $\phi_{Sat, pi}$					0.4510					
	Factor for Water-saturated Concrete ⁷	K _{sat, pi}	_					.48	ana af AOI		

- 1. The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- Temperature Range 1: Maximum short-term temperature of 110°F (43°C). Maximum long-term temperature of 75°F (24°C).
- Temperature Range 2: Maximum short-term temperature of 150°F (66°C). Maximum long-term temperature of 110°F (43°C).
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling)
- Long-term concrete temperature are constant temperatures over a significant time period.
- 6. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%
- 7. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by K_{sat} .
- 8. For anchors installed in overhead and subjected to tension resulting from sustained loading, multiply the value calculated for \dot{N}_a according to ICC-ES AC308 by 0.75.
- The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .

- 10. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 11. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 12. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.
- 13. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for #7 rebar anchors must be multiplied by $\alpha_{N,seis} = 0.80$.
- 14. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for #8 rebar anchors must be multiplied by $\alpha_{\text{N,seis}}$ = 0.92
- 15. The values of f'c used for calculation purposes must not exceed 8000 psi (55.1 MPa) for uncracked concrete. The value of f'c used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.

$\mathsf{XP}^{ ilde{ iny}}$ High-Strength Anchoring Adhesive for Cracked and Uncracked Concrete

SET-XP® Epoxy Anchor Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete^{1,5}

* See page 13 for an explanation of the load table icons

	Symbol	Units		No	minal A	nchor Dia	meter (i	n.)		
	Characteristic	Syllibul	UIIIIS	3/8	1/2	5/8	3/4	7/8	1	11/4
	Steel Strengt	h in Shea	ır							
	Minimum Shear Stress Area	Ase	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Shear Resistance of Steel - ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675
	- ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720
	- Type 410 Stainless (ASTM A193, Grade B6)	V _{sa} ⁶	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955
Threaded Rod	- Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140
Tilleaded Rod	Reduction for Seismic Shear - ASTM F1554, Grade 36 ⁶			0.87	0.78	0.68	0.68	0.68	0.68	0.65
	Reduction for Seismic Shear - ASTM A193, Grade B7 ⁶	7		0.87	0.78	0.68	0.68	0.68	0.68	0.65
	Reduction for Seismic Shear - Stainless (ASTM A193, Grade B6) ⁶	$lpha_{V\!,seis}$	_	0.69	0.82	0.75	0.75	0.75	0.83	0.72
	Reduction for Seismic Shear - Stainless (ASTM A193, Grade B8 and B8M) ⁶			0.69	0.82	0.75	0.75	0.75	0.83	0.72
	Strength Reduction Factor - Steel Failure	φ	_				0.65^{2}			
	Concrete Breakout S	trength i	in Shear							
Outside Diame	ter of Anchor	d _o	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.250
Load Bearing L	ength of Anchor in Shear	$\ell_{ extstyle $	in.				h _{ef}			
Strength Redu	ction Factor - Breakout Failure	ϕ	_				0.70^{3}			
	Concrete Pryout St	rength in	Shear							
Coefficient for	Pryout Strength	k _{cp}	_				2.0			
Strength Redu	ction Factor - Pryout Failure	φ	_				0.70^{4}			

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- 2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of AC 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 4. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ .
- 5. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.
- 6. The values of V_{sa} are applicable for both cracked and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$ for the corresponding threaded rod steel type.

SET-XP® Epoxy Anchor Shear Strength Design Data for Rebar in Normal-Weight Concrete^{1,5}

* See page 13 for an explanation of the load table icons

	Characteristic	Symbol	Unite			ı	Rebar Sizo	9		
	Gilaracicristic	Syllibul	UIIIIS	#3	#4	#5	#6	#7	#8	#10
	Steel S	trength i	n Shear							
	Minimum Shear Stress Area	Ase	in²	0.11	0.20	0.31	0.44	0.60	0.79	1.23
Rebar	Shear Resistance of Steel - Rebar (ASTM A615, Grade 60)	V_{sa}^6	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420
nebai	Reduction for Seismic Shear - Rebar (ASTM A615, Grade 60) ⁶	$\alpha_{V,seis}$	_	0.85	0.88	0.84	0.84	0.77	0.77	0.59
	Strength Reduction Factor - Steel Failure	φ	_				0.602			
	Concrete Brea	kout Str	ength in	Shear						
Outside D	iameter of Anchor	d_{o}	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.250
Load Bear	ing Length of Anchor in Shear	ℓ_{e}	in.				h _{ef}			
Strength F	Reduction Factor - Breakout Failure	φ					0.703			
	Concrete Pryout Strength in Shear									
Coefficien	t for Pryout Strength	k _{cp}	_				2.0			
Strength F	Reduction Factor - Pryout Failure	φ	_				0.704			

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of AC 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.
- 3. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- 5. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.
- 6. The values of V_{sa} are applicable for both cracked and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{sa} must be multiplied by $\alpha_{V,seis}$.

See page 13 for an explanation of the load table icons

Tension and Shear Loads for Threaded Rod and Rebar Anchors in 8-inch Lightweight Medium-Weight and Normal-Weight Grout Filled CMU

U-IIIUII LIYI	itweight,iv	icuiuiii-wc	igiil allu N	Ullial-WEI	giit Gibut i	IIIGU CIVIO		OILO (ES)					
Rod Dia.	Drill Bit	Min. Embed.	Critical	Critical	Critical Spacing	8-inch G	rout Filled C Based on Cl						
in. (mm)	Dia.	Depth	Edge Dist.	End Dist. in.	Dist.	Ten	sion	Sh	ear				
	in.	n. in. (mm)	(mm)	(mm)	in. (mm)	Ultimate lbs. (kN)	Allowable lbs. (kN)	Ultimate lbs. (kN)	Allowable lbs. (kN)				
Threaded Rod Anchors Installed on the Face of the CMU Wall (see Figure 1)													
³ / ₈ (9.5)	1/2	33/8 (86)	12 (305)	12 (305)	8 (203)	7,441 (33.1)	1,490 (6.6)	5,721 (25.4)	1,145 (5.1)				
½ (12.7)	5/8	4½ (114)	12 (305)	12 (305)	8 (203)	9,125 (40.6)	1,825 (8.1)	6,997 (31.1)	1,350 (6.0)				
5/8 (15.9)	3/4	5 % (143)	12 (305)	12 (305)	8 (203)	9,618 (42.8)	1,895 (8.4)	6,887 (30.6)	1,350 (6.0)				
3⁄4 (19.1)	7/8	6 ½ (165)	12 (305)	12 (305)	8 (203)	9,480 (42.2)	1,895 (8.4)	6,747 (30.0)	1,350 (6.0)				
		Rebar And	hors Install	ed on the Fa	ce of the CN	/IU Wall (se	e Figure 1)						
#3 (9.5)	1/2	33/8 (86)	12 (305)	12 (305)	8 (203)	6,982 (31.1)	1,395 (6.2)	7,299 (32.5)	1,460 (6.5)				
#4 (12.7)	5/8	4½ (114)	12 (305)	12 (305)	8 (203)	9,167 (40.8)	1,835 (8.2)	8,144 (36.2)	1,505 (6.7)				
#5	3/4	55/8	12	12	8	10,925	2,185	7,530	1,505				

1. Threaded rods must comply with ASTM F1554 Grade 36, Grade C minimum. Rebar must comply with ASTM A615, Grade 60 minimum.

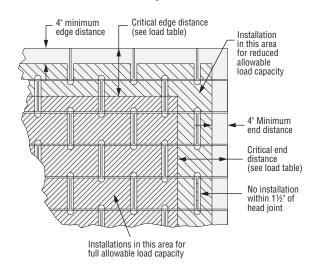
(143)

(305)

(305)

(203)

(48.6)


(9.7)

- Values for 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, $f^{\prime}_{\,m},$ at 28 days is 1500 psi.
- 3. Embedment depth is measured from the outside face of the concrete masonry unit.
- 4. Allowable loads may be increased $33 \frac{1}{3}$ % for short-term loading due to wind forces or seismic forces where permitted by code.
- Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 7. Refer to allowable load-adjustment factors for end distance, edge distance and spacing on page 21.

Figure 1

(33.5)

(6.7)

Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU

In-Service Temperature Sensitivity

3/4

(15.9)

Base N Tempe	Percent Allowable	
°F	Load	
70	21	100%
110	43	89%
125	52	89%
135	57	74%
150	66	74%

- 1. Refer to temperature sensitivity chart for allowable bond strength reduction for temperature. See page 225 for more information.
- 2. Percent allowable load may be linearly interpolated for intermediate base material temperatures.
- 3. $^{\circ}C = (^{\circ}F-32) / 1.8$

High-Strength Anchoring Adhesive for Cracked and Uncracked Concrete

Load-Adjustment Factors for SET-XP® Adhesive in Face of Wall Installation in 8" Grout-Filled CMU: End / Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced end and edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the end or edge distance (Cact) or spacing (Sact) at which the anchor is to be installed.
- 5. The load-adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges or spacing are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- 9. Adjustment factors are to be applied to allowable tension or shear load based on CMU strength values only.

End and Edge Distance Tension (fc)

	Dia.	3/8	1/2	5/8	3/4	#3	#4	#5
	Е	3 %	4 1/2	5 %	6 1/2	3 %	4 1/2	5 %
Cact (in)	C _{cr}	12	12	12	12	12	12	12
(,	C _{min}	4	4	4	4	4	4	4
	f _{cmin}	0.91	1.00	1.00	1.00	0.96	0.88	0.88
4		0.91	1.00	1.00	1.00	0.96	0.88	0.88
6		0.93	1.00	1.00	1.00	0.97	0.91	0.91
8		0.96	1.00	1.00	1.00	0.98	0.94	0.94
10		0.98	1.00	1.00	1.00	0.99	0.97	0.97
12		1.00	1.00	1.00	1.00	1.00	1.00	1.00

See Notes Below

End and Edge Distance Shear (fc) Shear Load Perpendicular to End or Edge

	Dia.	/ 0	/4	/0	/*	"0	"7	"0
	Е	3 3/8	4 1/2	5 %	6 1/2	3 %	4 1/2	5 %
Cact (in)	C _{cr}	12	12	12	12	12	12	12
(,	C _{min}	4	4	4	4	4	4	4
	f _{cmin}	0.72	0.58	0.48	0.44	0.62	0.54	0.43
4		0.72	0.58	0.48	0.44	0.62	0.54	0.43
6		0.79	0.69	0.61	0.58	0.72	0.66	0.57
8		0.86	0.79	0.74	0.72	0.81	0.77	0.72
10		0.93	0.90	0.87	0.86	0.91	0.89	0.86
12		1.00	1.00	1.00	1.00	1.00	1.00	1.00

End and Edge Distance Shear (f_c) Shear Load Parallel to End or Edge

Cact (in)	Dia.	3/8	1/2	5/8	3/4	#3	#4	#5
	E	3 3/8	4 1/2	5 %	6 1/2	3 %	4 1/2	5 %
	C _{cr}	12	12	12	12	12	12	12
	C _{min}	4	4	4	4	4	4	4
	f _{cmin}	0.94	0.87	0.87	0.85	0.84	0.82	0.82
4		0.94	0.87	0.87	0.85	0.84	0.82	0.82
6		0.96	0.90	0.90	0.89	0.88	0.87	0.87
8		0.97	0.94	0.94	0.93	0.92	0.91	0.91
10		0.99	0.97	0.97	0.96	0.96	0.96	0.96
12		1.00	1.00	1.00	1.00	1.00	1.00	1.00

- 1. E = Embedment depth (inches).
- 2. Cact = actual end or edge distance at which anchor is installed (inches).
- 3. C_{cr} = critical end or edge distance for 100% load (inches).
- 4. C_{min} = minimum end or edge distance for reduced load (inches).
- 5. f_c = adjustment factor for allowable load at actual end or edge distance.
- 6. fccr = adjustment factor for allowable load at critical end or edge distance. fccr is always = 1.00.
- 7. f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.
- 8. $f_c = f_{cmin} + [(1 f_{cmin}) (C_{act} C_{min}) /$ (C_{cr} - C_{min})].

Spacing Tension (fs) Dia.

Ε

 S_{cr}

Smin

f_{smin}

Sact

(in)

4

5

6

7

8

3/8

3 %

8

4

1.00

1.00

1.00

1.00

1.00

1.00

1/2

4 1/2

8

4

0.82

0.82

0.87

0.91

0.96

1.00

5/8

5 %

8

4

0.82

0.82 0.82

0.87 0.87

0.91 0.91

0.96

1.00

3/4

6 1/2

8

4

0.82

0.96

1.00

#3

3 %

8

4

0.87

0.87

0.90

0.94

0.97

1.00

4 1/2

8

4

0.87

0.87

0.90

0.94

0.97

1.00

#4 #5

5 %

8

4

0.87

0.87

0.90

0.94

0.97

1.00

Spacing Shear (fs)

Sact (in)	Dia.	3/8	1/2	5/8	3/4	#3	#4	#5
	Е	3 3/8	4 1/2	5 %	6 1/2	3 %	4 1/2	5 %
	Scr	8	8	8	8	8	8	8
	S _{min}	4	4	4	4	4	4	4
	f _{smin}	1.00	1.00	1.00	1.00	0.91	0.91	1.00
4		1.00	1.00	1.00	1.00	0.91	0.91	1.00
5		1.00	1.00	1.00	1.00	0.93	0.93	1.00
6		1.00	1.00	1.00	1.00	0.96	0.96	1.00
7		1.00	1.00	1.00	1.00	0.98	0.98	1.00
8		1.00	1.00	1.00	1.00	1.00	1.00	1.00

1. E = Embedment depth (inches).

- S_{act} = actual spacing distance at which anchors are installed (inches).
- 3. S_{cr} = critical spacing distance for 100% load (inches).
- 4. S_{min} = minimum spacing distance for reduced load (inches).
- 5. f_s = adjustment factor for allowable load at actual spacing distance.
- 6. fscr = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.
- 7. $f_{smin} = adjustment factor for$ allowable load at minimum spacing distance.
- 8. 8. $f_s = f_{smin} + [(1 f_{smin}) (S_{act} S_{min}) /$ $(S_{cr} - S_{min})].$

