${\sf Strong-Bolt}^{m imes}$ 2 Wedge Anchor for Cracked and Uncracked Concrete

The Strong-Bolt® 2 wedge anchor is the next-generation solution for cracked and uncracked concrete. Following rigorous testing according to ICC-ES acceptance criteria, the Strong-Bolt 2 anchor received classification as a Category 1 anchor, the highest attainable anchor category for performance in cracked concrete under static and seismic loading. Available in stainless steel, it is code-listed by ICC-ES under the 2009 IBC requirements for post-installed anchors in cracked and uncracked concrete.

FEATURES:

- Category 1 anchor classification: The Strong-Bolt 2 anchor received classification as a Category 1 anchor, which is established by performance in reliability tests in accordance with AC193 and ACI355.2 test criteria. Category 1 is the highest attainable anchor category for reliability.
- Tri-segmented clip: Each segment adjusts independently, increasing follow-up • expansion should the hole increase in size as a result of a crack
- Dual embossments on each clip segment: Enables clip to undercut into the concrete • thereby increasing follow-up expansion should a crack occur
- The 3%" anchor solution approved for 3 1/4" concrete thickness: The Strong-Bolt 2 anchor can be installed in cracked concrete with a minimum thickness of 31/4", including concrete-over-metal decking
- High-strength alloy clip on carbon-steel anchors: This special alloy clip offers • improved performance
- Standard (ANSI) fractional anchor: Fits most fixtures and installs with common drill bit sizes and tools
- Type 316 stainless-steel clip on stainless steel anchors: In addition to superior • corrosion resistance, a stainless-steel clip offers "memory" that contributes to the anchor's performance if the hole increases in size because of a crack

MATERIAL: Carbon-steel stud with special alloy clip; stainless-steel stud with stainlesssteel clip

FINISH: Zinc-plated (carbon steel)

CODES: ICC-ES ESR-3037 (carbon and stainless steel in concrete); IAPMO ES ER-240 (carbon steel in CMU); City of Los Angeles RR25891; Underwriters Laboratories File Ex3605; Factory Mutual 3043442; Florida - Pending

TEST CRITERIA: The Strong-Bolt 2 wedge anchor has been tested in accordance with the ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements (AC 193) and ACI 355.2 for the following:

- Static tension and shear loading in cracked and uncracked concrete
- Seismic and wind loading in cracked and uncracked concrete
- · Performance in cracked concrete
- Performance in lightweight concrete over metal deck

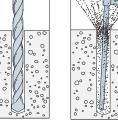
INSTALLATION: • Do not use an impact wrench to set or tighten the Strong-Bolt 2 anchor. Caution: Oversized holes in the base material will make A Gaution: Oversized holes in the bass matching and will reduce the anchor's load capacity.

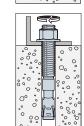
- Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth and blow it clean using compressed air. Overhead installations need not be blown clean. Alternatively, drill the hole deep enough to accommodate minimum hole depth and dust from drilling.
- Assemble the anchor with nut and washer so that the top of the nut is flush with the top of the anchor. Place the anchor in the fixture and drive into the hole until washer and nut are tight against the fixture.
- Tighten to the required installation torque.

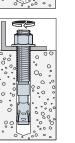
DESIGN EXMPLE: See pages 233-234

Length Identification Head Marks on Strong-Bolt® 2 Wedge Anchors (corresponds to length of anchor - inches)

Mark	Units	A	В	C	D	Ε	F	G	Η	I	J	K	L	М	N	0	Р	Q	R	S	T	U	V	W	Х	Y	Ζ
From	in.	11⁄2	2	21⁄2	3	31⁄2	4	41⁄2	5	5½	6	61⁄2	7	7 ½	8	81⁄2	9	9½	10	11	12	13	14	15	16	17	18
Up To But Not Including	in.	2	21⁄2	3	31⁄2	4	4 ½	5	5½	6	61⁄2	7	71⁄2	8	81⁄2	9	91⁄2	10	11	12	13	14	15	16	17	18	19


Strong-Bolt® 2 Wedge Anchor


Installation Sequence


0.

ď

ć

Mechanical Anchors

Strong-Bolt[®] 2 Wedge Anchor Product Information

Strong-Bolt® 2 Anchor Product Data

Size	Carbon Steel	316 Stainless	Drill Bit	Thread	Qua	ntity
(in.)	Model No.	Steel Model No.	Dia. (in.)	Length (in.)	Box	Carton
3%a x 2 3%₄	STB2-37234	STB2-372346SS	3⁄8	1 5⁄16	50	250
¾ x3	STB2-37300	STB2-373006SS	3⁄8	1 %16	50	250
3%a x 3 1∕2	STB2-37312	STB2-373126SS	3⁄8	2 ¼16	50	250
3%a x 3 3%₄	STB2-37334	STB2-373346SS	3⁄8	2 5⁄16	50	250
³∕8 x 5	STB2-37500	STB2-375006SS	3⁄8	3 %16	50	200
¾ x 7	STB2-37700	STB2-377006SS	3⁄8	5 %16	50	200
1⁄2 x 3 ¾	STB2-50334	STB2-503346SS	1/2	2 1⁄16	25	125
1⁄2 x 4 1⁄4	STB2-50414	STB2-504146SS	1/2	2%16	25	100
1/2 x 4 3/4	STB2-50434	STB2-504346SS	1/2	3 ½16	25	100
1⁄2 x 5 1⁄2	STB2-50512	STB2-505126SS	1/2	3 ¹³ ⁄16	25	100
1⁄2 x 7	STB2-50700	STB2-507006SS	1/2	5 5⁄16	25	100
1/2 × 8 1/2	STB2-50812	STB2-508126SS	1/2	6	25	50
1⁄₂ x 10	STB2-50100	STB2-501006SS	1/2	6	25	50
5% x 4 1/2	STB2-62412	STB2-624126SS	5⁄8	2 1/16	20	80
5% x 5	STB2-62500	STB2-625006SS	5⁄8	2 ¹⁵ ⁄16	20	80
5% x 6	STB2-62600	STB2-626006SS	5⁄8	3 ¹⁵ ⁄16	20	80
5%ax7	STB2-62700	STB2-627006SS	5⁄8	4 ¹⁵ ⁄16	20	80
5% x 8 1/2	STB2-62812	STB2-628126SS	5⁄8	6	20	40
5%a x 10	STB2-62100	STB2-621006SS	5⁄8	6	10	20
³ ⁄ ₄ x 5 ¹ ⁄ ₂	STB2-75512	STB2-755126SS	3⁄4	3 ³ ⁄16	10	40
³ ⁄ ₄ x 6 ¹ ⁄ ₄	STB2-75614	STB2-756146SS	3⁄4	3 ¹⁵ ⁄16	10	40
¾ X 7	STB2-75700	STB2-757006SS	3⁄4	4 ¹¹ / ₁₆	10	40
3⁄4 x 8 1⁄2	STB2-75812	STB2-758126SS	3⁄4	6	10	20
¾ x 10	STB2-75100	STB2-751006SS	3⁄4	6	10	20

Material Specifications

	Carbon Steel	- Zinc Plated ¹	
	Componen	t Materials	
Anchor Body	Nut	Washer	Clip
Carbon Steel	Carbon Steel ASTM A 563, Grade A	Carbon Steel ASTM F844	Carbon Steel ASTM A 568

ымы

Strong-T

1. Zinc meets ASTM B 633, Class SC 1 (Fe / Zn 5), Type III.

	Stainles	ss Steel	
	Componen	t Materials	
Anchor Body	Nut	Washer	Clip
Type 316 Stainless Steel	Type 316 Stainless Steel	Type 316 Stainless Steel	Type 316 Stainless Steel

Carbon Steel Strong-Bolt® 2 Wedge Anchor Installation Information¹

					-	N	ominal Ancho	r Diameter			
Characteristic	Symbol	Units					Carbon S	iteel			
			³∕a i	nch		½ inc	h	5⁄8 i	nch	3⁄4 i	nch
			In	stallatior	n Informa	tion					
Nominal Diameter	d _a ³	in.	8	8		1⁄2		5	8	3	4
Drill Bit Diameter	d	in.	8	8		1⁄2		5	8	3	4
Baseplate Clearance Hole Diameter ²	d _c	in.	7	16		⁹ ⁄16		11,	16	7	8
Installation Torque	T _{inst}	ft-lbf	3	0		60		9	0	15	50
Nominal Embedment Depth	h _{nom}	in.	11⁄8	21⁄8	2	3⁄4	31⁄8	33⁄8	51 ⁄8	41⁄8	5 ¾
Effective Embedment Depth	h _{ef}	in.	11/2	21/2	2	1/4	33⁄8	23⁄4	41⁄2	33⁄8	5
Minimum Hole Depth	h _{hole}	in.	2	3		3	4 1/8	35⁄8	5 3⁄8	4 3⁄8	6
Minimum Overall Anchor Length	ℓ _{anch}	in.	23⁄4	31⁄2	3	3⁄4	51⁄2	41⁄2	6	51⁄2	7
Critical Edge Distance	C _{ac}	in.	6½	6	61⁄2	61⁄2	71⁄2	71⁄2	9	9	8
	C _{min}	in.		6	7	4	4	6	/2	6	/2
Minimum Edge Distance	for $s \ge$	in.	-	-	_	_	_	-	_	8	3
	S _{min}	in.		3	7	4	4	Ę	5	1	7
Minimum Spacing	for $c \ge$	in.	-	_	_	—	—		_	8	3
Minimum Concrete Thickness	h _{min}	in.	31⁄4	41⁄2	41⁄2	51⁄2	6	51⁄2	71⁄8	6 ¾	8¾
				Additio	nal Data						
Yield Strength	f _{ya}	psi	92,	000			85,000			70,	000
Tensile Strength	f _{uta} ⁴	psi				115	,000			110	000
Minimum Tensile and Shear Stress Area	A _{se}	in ²	0.0	514		0.10	5	0.166		0.2	.70
Axial Stiffness in Service Load Range - Cracked and Uncracked Concrete	β	lb./in 34,820		63,570			91,5	370	118,840		

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

2. The clearance must comply with applicable code requirements for the connected element.

3. For the 2006 IBC, d_{0} replaces $d_{a}.$

C-SAS-2012 © 2012 Simpson Strong-Tie Company Inc.

4. For the 2003 IBC, fut replaces futa.

Strong-Bolt[®] 2 Wedge Anchor Product Information

SIMPSON Strong-Tie

Stainless-Steel Strong-Bolt® 2 Wedge Anchor Installation Information¹

						Nom	inal Anch	or Diamete	r				
Characteristic	Symbol	Units					Stainless						
				nch		½ inch		5∕8 i	nch	3⁄4 i	nch		
		r	7	tion Infor	rmation			1		T			
Nominal Diameter	d _a ³	in.		8		1⁄2			8		4		
Drill Bit Diameter	d	in.	3	8		1⁄2		5	8	3	4		
Baseplate Clearance Hole Diameter ²	d_{c}	in.	7	16		^{9⁄} 16		11,	16	3	8		
Installation Torque	T _{inst}	ft-lbf	3	0		60		8	0	15	50		
Nominal Embedment Depth	h _{nom}	in.	1 7⁄8	2 1⁄8	23⁄4	3	3 7⁄8	3 3⁄8	5 ½	4 1/8	5 ¾		
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	2 1/2	2 1⁄4	3	3 3⁄8	2 ¾	4 1/2	3 3/8	5		
Minimum Hole Depth	h _{hole}	in.	2	3	3	4	11/8	3 5⁄8	5 3 ⁄8	4 ¾	6		
Minimum Overall Anchor Length	ℓ_{anch}	in.	2 3⁄4	3 1⁄2	3 3⁄4	Ę	5 1⁄2	4 1⁄2	6	5 1⁄2	7		
Critical Edge Distance	C _{ac}	in.	6 1⁄2	8 1/2	4 1⁄2		7	7 1⁄2	9	8	8		
Minimum Edge Distance	C _{min}	in.	6	5	6 1⁄2	5	4	4	1	6	6		
Minimum Euge Distance	for $s \ge$	in.	1	0	_	-	8	8	3	-	_		
Minimum Spacing	s _{min}	in.	:	3	8	5 1⁄2	4	6	1⁄4	6	1/2		
Minimum Spacing	for $c \ge$	in.	1	0	_	_	8	5	1⁄2	-	_		
Minimum Concrete Thickness	h _{min}	in.	3 1⁄4	4 1⁄2	4 1/2		6	5 1⁄2	7 1⁄8	6 ³ ⁄4	8 3⁄4		
			Add	itional D	ata								
Yield Strength	f _{ya}	psi	80,	000		92,000		82,0	000	68,	000		
Tensile Strength	f_{uta}^4	psi	100	,000		115,000		115,000		108,	.000	95,	000
Minimum Tensile and Shear Stress Area	A _{se}	in²	0.0	514	0.105		0.105 0.166		66	6 0.270			
Axial Stiffness in Service Load Range - Cracked and Uncracked Concrete	pad Range - a 15 m 20 150 54 000		61,270			154,290							

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

2. The clearance must comply with applicable code requirements for the connected element.

3. For the 2006 IBC, $d_{\rm 0}$ replaces $d_{\rm a}.$

4. For the 2003 IBC, fut replaces futa.

Carbon Steel Strong-Bolt® 2 Wedge Anch	or Tensior	Streng	th Design	Data ¹					page 13 for a ne load table id	
					N	ominal Anc	hor Diamet	er		
Characteristic	Symbol	Units				Carbo	n Steel			
			³∕8 i	nch	1⁄2 i	nch	5⁄8 i	nch	3⁄4 i	nch
Anchor Category	1,2 or 3					-	1			
Nominal Embedment Depth	h _{nom}	in.	1 7⁄8	27⁄8	2¾	31⁄8	3 3⁄8	51⁄8	4 1⁄8	5 ¾
	Stee	l Strengt	h in Tensio	n (ACI 318 S	Section D.5	.1)			1	
Steel Strength in Tension	N _{sa}	lb	5,6	600	12,	100	19,	070	29,	700
Strength Reduction Factor - Steel Failure ²	φ _{sa}	_				0.	75			
	Concrete Br	eakout S	trength in T	ension (AC	I 318 Section	on D.5.2) ⁸		Γ	1	
Effective Embedment Depth	h _{ef}	in.	1 1/2	2 1/2	21⁄4	3 %	2¾	4 1⁄2	3 3/8	5
Critical Edge Distance	C _{ac}	in.	61⁄2	6	61⁄2	7 1⁄2	7 1⁄2	9	9	8
Effectiveness Factor - Uncracked Concrete	k _{uncr}	_	2	24	2	24	2	4	2	4
Effectiveness Factor - Cracked Concrete	k _{cr}	_	1	7	1	7	1	7	1	7
Modification Factor	$\Psi_{C,N}^{7}$	_	1.	00	1.	00	1.	00	1.0	00
Strength Reduction Factor - Concrete Breakout Failure ³	φ _{cb}	_				0.	65			
	Pull-0	ut Streng	th in Tensic	on (ACI 318	Section D.	5.3) ⁸				
Pull-Out Strength Cracked Concrete (f' _c = 2500 psi)	N _{p,cr}	lb	1,300⁵	2,7755	N/A ⁴	3,7355	N/A ⁴	6,895⁵	N/A ⁴	8,500⁵
Pull-Out Strength Uncracked Concrete (f' _c = 2500 psi)	N _{p,uncr}	lb	N/A ⁴	3,3405	3,615⁵	5,255⁵	N/A ⁴	9,025 ^₅	7,1155	8,870 ⁵
Strength Reduction Factor - Pullout Failure ⁶	ϕ_p	—				0.	65			
	ensile Stre	ngth for S	Seismic Ap	plications (ACI Section	D.3.3.3) ⁸				
Tension Strength of Single Anchor for Seismic Loads (f' _c = 2500 psi)	N _{p,eq}	lb	1,3005	2,7755	N/A ⁴	3,7355	N/A ⁴	6,8955	N/A ⁴	8,5005
Strength Reduction Factor - Pullout Failure ⁶	ϕ_{eq}	-				0.	65			

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.5. Strong-Bolt® 2 anchors are ductile steel elements as defined in ACI 318 D.1.

3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.4(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.4 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.4(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 D.4.5(c).

4. N/A (Not Applicable) denotes that pullout resistance does not need to be considered.

5. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c / 2,500 psi)0.5

6. The tabulated value of ϕ_p or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318 Section D.4.5(c).

7. For the 2003 IBC, Ψ_3 replaces $\Psi_{c.N}$.

C-SAS-2012 © 2012 Simpson Strong-Tie Company Inc.

8. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.4, modify the value of concrete breakout strength, N_{p,cr}, N_{p,uncr} and N_{eq} by 0.6. All-lightweight concrete is beyond the scope of this table.

Stainless Steel Strong-Bolt[®] 2 Wedge Anchor Tension Strength Design Data¹

See page 13 for an explanation of the load table icons

Stamicss Steel Strong Bon 2 Wedg	0 / 11101101	Teneren	Strongth	Boorgin					a table icol	15
					Nom	inal Anch	or Diame	eter		
Characteristic	Symbol	Units				Stainles	s Steel			
			³∕a i	nch	1⁄2 i	nch	5⁄8 i	nch	¾ i	nch
Anchor Category	1,2 or 3	_				1				
Nominal Embedment Depth	h _{nom}	in.	1 1⁄8	2 7⁄8	23⁄4	37⁄8	3 3⁄8	51⁄8	4 1⁄8	5¾
	Steel St	rength in 1	Tension (A	CI 318 Se	ction D.5	.1)				
Steel Strength in Tension	N _{sa}	lb	5,1	40	12,	075	17,	930	25,	650
Strength Reduction Factor - Steel Failure ²	ϕ_{SA}	_				0.7	5			
Conc	rete Break	out Streng	th in Tens	ion (ACI 3	18 Sectio	n D.5.2)1	0			
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	21⁄2	21⁄4	3 3⁄8	23⁄4	4 1⁄2	33⁄8	5
Critical Edge Distance	C _{ac}	in.	6 1⁄2	81⁄2	4 1/2	7	7 ½	9	8	8
Effectiveness Factor - Uncracked Concrete	k _{uncr}	_	2	4	2	4	2	24	2	4
Effectiveness Factor - Cracked Concrete	k _{cr}	_	1	7	1	7	1	7	1	7
Modification Factor	Ψc,N ⁹	_	1.	00	1.	00	1.	00	1.	00
Strength Reduction Factor - Concrete Breakout Failure ³	ϕ_{cb}	_			1	0.6	5			
	Pull-Out S	trength in	Tension (ACI 318 S	ection D.5	5. 3) ¹⁰				
Pull-Out Strength Cracked Concrete (f' _c = 2500 psi)	N _{p,cr}	lb	1,720 ⁶	3,145 ⁶	2,560⁵	4,3055	N/A ⁴	6,545 ⁷	N/A ⁴	8,2305
Pull-Out Strength Uncracked Concrete (f' _c = 2500 psi)	N _{p,uncr}	lb	N/A ⁴	4,7706	3,2305	4,4955	N/A ⁴	7,615⁵	7,7257	9,6257
Strength Reduction Factor - Pullout Failure ⁸	ϕ_p	_				0.6	5			
Tensi	le Strengtl	h for Seisn	nic Applic	ations (AC	I Section	D.3.3.3)1	0			
Tension Strength of Single Anchor for Seismic Loads (f' _c = 2500 psi)	N _{p,eq}	lb	1,7206	2,830 ⁶	2,5605	4,3055	N/A ⁴	6,545 ⁷	N/A ⁴	8,2305
Strength Reduction Factor - Pullout Failure ⁸	ϕ_{eq}	_				0.6	5			

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The tabulated value of ϕ_{ea} applies when the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used. If the load

combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.5. Strong-Bolt[®] 2 anchors are ductile steel elements as defined in ACI 318 D.1.

3. The tabulated value of \u03c6_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.4(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the \u03c6_{bb} factors described in ACI 318 D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.4 for Condition A are met, the appropriate value of \u03c6_{cb} must be determined in accordance with ACI 318 D.4.4(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of \u03c6_{cb} must be determined in accordance with ACI 318 D.4.4(c).

4. N/A (Not Applicable) denotes that pullout resistance does not need to be considered.

5. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 2,500 psi)^{0.5}.

6. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f⁺_c / 2,500 psi)^{0.3}.

7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 2,500 psi)^{0.4}.

8. The tabulated value of φ_p or φ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, appropriate value of φ must be determined in accordance with ACI 318 Section D.4.5(c).

9. For the 2003 IBC, ψ_3 replaces $\psi_{c,N}.$

10. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.4, modify the value of concrete breakout strength, $N_{p,cr}$, $N_{p,uncr}$ and N_{eq} by 0.6. All-lightweight concrete is beyond the scope of this table.

See page 13 for an explanation

Carbon Steel Strong-Bolt® 2 Wedge Anchor S	Shear Str	ength D	esign Da	ata1	23			of the load		
					Non	ninal Anc	hor Diam	leter		
Characteristic	Symbol	Units				Carbo	n Steel			
			3∕8 i	nch	1⁄2 i	nch	5⁄8 i	nch	3⁄4 i	nch
Anchor Category	1,2 or 3	—				-	1			
Nominal Embedment Depth	h _{nom}	in.	1 7⁄8	27⁄8	23⁄4	37⁄8	3 %	51⁄8	4 1⁄8	5 ¾
Stee	el Strength	n in Shea	r (ACI 31	8 Section	D.6.1)					
Steel Strength in Shear	V _{sa}	lb	1,8	800	7,2	235	11,	035	14,	480
Strength Reduction Factor - Steel Failure ²	φ _{sa}	—				0.	65			
Concrete B	reakout St	rength ir	n Shear (J	ACI 318 S	ection D	. 6.2) ⁶				
Outside Diameter	da ⁵	in.	0.3	75	0.5	500	0.6	625	0.7	750
Load Bearing Length of Anchor in Shear	ℓ _e	in.	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000
Strength Reduction Factor – Concrete Breakout Failure ³	Фcb	-				0.	70			
Concrete	Pryout Sti	ength in	Shear (A	CI 318 S	ection D.	6.3)				
Coefficient for Pryout Strength	k _{cp}	—	1.0	2.0	1.0	2.0	2	.0	2	.0
Effective Embedment Depth	h _{ef}	in.	1 ½	21⁄2	21⁄4	3 3⁄8	2¾	4 1⁄2	3 3⁄8	5
Strength Reduction Factor – Concrete Pryout Failure ⁴	ф _{ср}	_				0.	70			
Steel Strength in	Shear for	Seismic	Applicati	ons (ACI	318 Sect	ion D.3.3	8.3)			
Shear Strength of Single Anchor for Seismic Loads (f' _c = 2500 psi)	V _{sa,eq}	lb	1,8	800	6,5	510	9,9	930	11,	775
Strength Reduction Factor - Steel Failure ²	φ _{sa}	—				0.	65			

LW

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318 D.4.5. Strong-Bolt®2 anchors are ductile steel elements as defined in ACI 318 D.1.

3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.4(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 Section D.4.4 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section D.4.4 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 Section D.4.4(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 Section D.4.5(c).

4. The tabulated value of ϕ_{cp} applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cp} must be determined in accordance with ACI 318 D.4.5(c).

5. For the 2006 IBC, do replaces da.

6. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.4, modify the value of concrete breakout strength by 0.6. All-lightweight concrete is beyond the scope of this table.

See page 13 for an

explanation of the load table icons

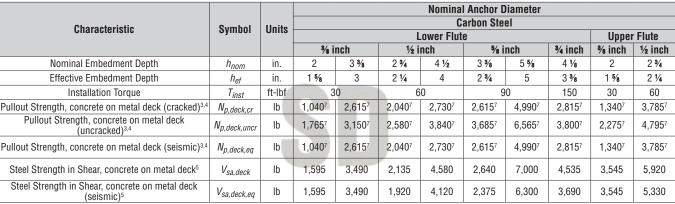
LW

Stainless-Steel Strong-Bolt® 2 Wedge Anchor Shear Strength Design Data¹

Statiliess-Steel Strolly-Doll ^o Z weage			i eliyili D	cordin D	ala			Give		
					Non	ninal Anc	hor Diam	eter		
Characteristic	Symbol	Units				Stainle	ss Steel			
			3∕8 i	nch	1⁄2 i	nch	5⁄8 i	nch	3⁄4 i	nch
Anchor Category	1,2 or 3	-					1			
Nominal Embedment Depth	h _{nom}	in.	1 7⁄8	21⁄8	23⁄4	3 7⁄8	3 %	5 1⁄8	4 1⁄8	5 ¾
S	teel Strei	ngth in Sl	hear (ACI	318 Sec	tion D.6.	1)				
Steel Strength in Shear	V _{sa}	lb	3,0)85	7,2	245	6,745	10,760	15,0	045
Strength Reduction Factor - Steel Failure ²	ϕ_{sa}	_				0.	65			
Concrete	e Breakou	t Strengt	h in Shea	ar (ACI 31	8 Sectio	n D.6.2) ^e	j			
Outside Diameter	d_a^{5}	in.	0.3	75	0.5	500	0.6	625	0.7	'50
Load Bearing Length of Anchor in Shear	l _e	in.	1.500	2.500	2.250	3.375	2.750	4.500	3.375	5.000
Strength Reduction Factor – Concrete Breakout Failure ³	ϕ_{cb}	- (0.	70			
Concre	te Pryout	Strength	n in Shea	r (ACI 31	8 Section	D.6.3)				
Coefficient for Pryout Strength	k _{cp}	—	1.0	2.0	1.0	2.0	2	.0	2.	.0
Effective Embedment Depth	h _{ef}	in.	1 1⁄2	21⁄2	21⁄4	3 3⁄8	23⁄4	4 1⁄2	3 3⁄8	5
Strength Reduction Factor – Concrete Pryout Failure⁴	ϕ_{CP}	_			1	0.	0.70			
Steel Strength	in Shear	for Seisn	nic Applic	Applications (ACI 318 Section D.3.3.3)						
Shear Strength of Single Anchor for Seismic Loads (f' _c = 2500 psi)						620				
Strength Reduction Factor – Steel Failure ²	ϕ_{Sa}	_				0.	65			

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The tabulated value of \$\phi_{sa}\$ applies when the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of \$\phi_{sa}\$ must be determined in accordance with ACI 318 D.4.5. Strong-Bolt® 2 anchors are ductile steel elements as defined in ACI 318 D.1.


3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, or ACI 318 Section 9.2 are used and the requirements of ACI 318 Section 0.4.4(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318 Section 0.4.4 for Condition A are allowed. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 Section 0.4.4 for Condition A are met, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 Section 0.4.4(c). If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318 Section 0.4.5(c).

4. The tabulated value of φ_{cp} applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318 D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of φ_{cp} must be determined in accordance with ACI 318 D.4.5(c).

5. For the 2006 IBC, d_0 replaces d_a .

For sand-lightweight concrete, in lieu of ACI 318 Section D.3.4, modify the value of concrete breakout strength by 0.6. All-lightweight concrete is beyond the scope of this table.

Carbon Steel Strong-Bolt[®] 2 Wedge Anchor Tension and Shear Strength Design Data for the Soffit of Concrete Over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,8,9}

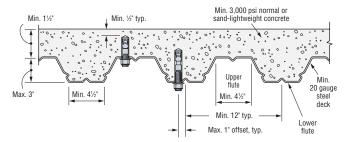
1. The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

- Profile steel deck must comply with the configuration in the figure below, and have a minimum base-steel thickness of 0.035 inch [20 gauge]. Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout

strength in uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}.$ For seismic loads, $N_{p,deck,eq}$ shall be substituted for $N_p.$

6-

- 5. In accordance with ACI 318 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies $V_{sa,deck}$ shall be substituted for V_{sa} . For seismic loads, $V_{sa,deck,eq}$ shall be substituted for V_{sa} .
- 6. The minimum anchor spacing along the flute must be the greater of $\rm 3.0h_{ef}$ or 1.5 times the flute width.
- The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 3,000 psi)^{0.5}.
- Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'_c, of 3,000 psi.
- 9. Minimum distance to edge of panel is 2hef.


Stainless Steel Strong-Bolt[®] 2 Wedge Anchor Tension and Shear Strength Design Data for the Soffit of Concrete Over Profile Steel Deck Floor and Roof Assemblies^{1,2,6,10,11}

Stainless Steel Characteristic Symbol Units Lower Flute **Upper Flute** 3/8 inch 1⁄2 inch 5/s inch 3/4 inch **¾** inch 1/2 inch Nominal Embedment Depth h_{nom} in. 2 3 3/8 2 3⁄4 4 1/2 3 3/8 5 1/8 4 1/8 2 2 3⁄4 Effective Embedment Depth 2 3/4 2 1/4 h_{ef} in. 1 5/8 3 2 1/4 4 5 3 3/8 1 5/8 T_{inst} Installation Torque ft-lbf 30 60 80 150 30 60 Pullout Strength, concrete on metal deck (cracked)³ 1,2308 2,605⁸ 1,9907 2,550 1,750⁹ 4,0209 3,0307 1,550⁸ 2,0557 lb N_{p,deck,cr} Pullout Strength, concrete on metal deck N_{p,deck,unci} lb 1,5808 3,9508 2.4757 2,6607 2,4707 5,0007 4,2759 1,990⁸ 2,5607 (uncracked)³ Pullout Strength, concrete on metal deck (seismic)⁵ lb 1,2308 2,3458 1,9907 2,5507 1,750⁹ 4,0209 3,0307 1,5508 2,0557 N_{p,deck,eq} Steel Strength in Shear, concrete on metal deck⁴ lb 2.285 3.085 3.430 3.235 3.085 5.955 V_{sa,deck} 4 680 5 4 3 0 6 1 3 5 Steel Strength in Shear, concrete on metal deck 2 285 3 085 2,400 3 2 7 5 3,235 5,430 5,520 3 085 lb 4.170 Vsa, deck.eq (seismic)5

 The information presented in this table must be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

C-SAS-2012 © 2012 Simpson Strong-Tie Company Inc.

- Profile steel deck must comply with the configuration in the figure below, and have a minimum base-steel thickness of 0.035 inch [20 gauge]. Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies N_{p,deck,cr} shall be substituted for N_{p,cr}. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{p,deck,uncr} shall be substituted for N_{p,uncr}. For seismic loads, N_{p,deck,eq} shall be substituted for N_p.

- In accordance with ACI 318 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V_{sa,deck} shall be substituted for V_{sa}. For seismic loads, V_{sa, deck,eq} shall be substituted for V_{sa}.
- 6. The minimum anchor spacing along the flute must be the greater of $3.0h_{ef}$ or 1.5 times the flute width.
- The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 3,000 psi)^{0.5}.
- The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'_c / 3,000 psi)^{0.3}.
- 9. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by $(f'_c / 3,000 \text{ psi})^{0.4}$.
- 10. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, $f'_{\rm C}$, of 3,000 psi.
- 11. Minimum distance to edge of panel is 2hef.

* See page 13 for an explanation

*See page 13 for an explanation

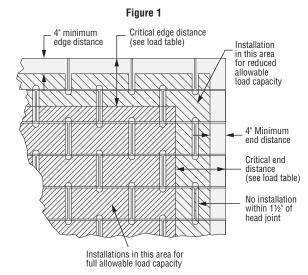
of the load table icons

of the load table icons

Carbon-Steel Strong-Bolt[®] 2 Wedge Anchor Tension and Shear Loads in 8-inch Lightweight, Medium-weight and Normal-Weight Grout-Filled CMU

0.	Drill	Min.	Install.	Critical	Critical	Critical	Tensio	n Load	Shea	r Load
Size in. (mm)	Bit Dia. in.	Embed. Depth. in. (mm)	Torque ft-Ibs (N-m)	Edge Dist. in. (mm)	End Dist. in. (mm)	Spacing in. (mm)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)
			Ancho	or Installed in	the Face of t	he CMU Wall	(See Figure 1	l)		
³∕s (9.5)	3⁄8	2 % (67)	20 (27.1)	12 (305)	12 (305)	8 (203)	2,185 (9.7)	435 (1.9)	3,875 (17.2)	775 (3.4)
1⁄₂ (12.7)	1⁄2	3 ½ (89)	35 (47.5)	12 (305)	12 (305)	8 (203)	2,645 (11.8)	530 (2.4)	5,055 (22.5)	1,010 (4.5)
5% (15.9)	5/8	4 ¾ (111)	55 (74.6)	20 (508)	20 (508)	8 (203)	4,460 (19.8)	890 (4.0)	8,815 (39.2)	1,765 (7.9)
¾ (19.1)	3⁄4	5 ¼ (133)	100 (135.6)	20 (508)	20 (508)	8 (203)	5,240 (23.3)	1050 (4.7)	12,450 (55.4)	2,490 (11.1)

1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.


2. Listed loads may be applied to installations on the face of the CMU wall at least 1 ¼ inch away from headjoints.

3. Values for 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, $f^\prime{}_m,$ at 28 days is 1500 psi.

4. Embedment depth is measured from the outside face of the concrete masonry unit.

5. Tension and shear loads may be combined using the parabolic interaction equation (n = 5/3).

6. Refer to allowable load adjustment factors for edge distance and spacing on page 105.

Carbon-Steel Strong-Bolt® 2 Wedge Anchor Tension and Shear Loads in 8-inch Lightweight, Medium-weight and Normal-Weight Grout-Filled CMU

		g,										
Size	Drill	Min. Embed.	Install.	Min.	Critical	Critical	Tensio	n Load	Shear Loa	d Perp. To Edge	Shear Loa	d Parallel To Edge
in. (mm)	Bit Dia. in.	Depth. in. (mm)	Torque ft-lbs (N-m)	Edge. Dist. in. (mm)	End Dist. in. (mm)	Spacing in. (mm)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)
				Anchor li	nstalled in	Cell Openin	g or Web (Top of Wall) (See Figu	re 2)		
¹ / ₂ (12.7)	1⁄2	3 ½ (89)	35 (47.5)	1 ¾ (44)	12 (305)	8 (203)	2,080 (9.3)	415 (1.8)	1,165 (5.2)	235 (1.0)	3,360 (14.9)	670 (3.0)
5⁄8 (15.9)	5⁄8	4³⁄s (111)	55 (74.6)	1 ¾ (44)	12 (305)	8 (203)	3,200 (14.2)	640 (2.8)	1,370 (6.1)	275 (1.2)	3,845 (17.1)	770 (3.4)

1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.

2. Values for 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry,

f'_m, at 28 days is 1500 psi.

3. Tension and shear loads may be combined using the parabolic interaction equation (n = 5/3).

4. Refer to allowable load adjustment factors for edge distance and spacing on page 105.

See page 13 for an explanation of the load table icons

See page 13 for an explanation of the

load table icons

Mechanical Anchors

Load Adjustment Factors for Carbon-Steel Strong-Bolt® 2 Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

* See page 13 for an explanation of the load table icons

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Located the edge distance (C_{act}) or spacing (S_{act}) at which the anchor is to be installed.

Edge or End Distance Tension (f_c)							
C _{act} (in.)	Dia.	3⁄8	1/2	5⁄8	3⁄4		
	E	2 5⁄8	3 1⁄2	4 ¾	5 1⁄4		
	C _{cr}	12	12	20	20		
	C _{min}	4	4	4	4		
	f _{cmin}	1.00	1.00	1.00	0.97		
4		1.00	1.00	1.00	0.97		
6		1.00	1.00	1.00	0.97		
8		1.00	1.00	1.00	0.98		
10		1.00	1.00	1.00	0.98		
12		1.00	1.00	1.00	0.99		
14				1.00	0.99		
16				1.00	0.99		
18				1.00	1.00		
20				1.00	1.00		

*	* See page 13 for an
	explanation of the
	load table icons

0	E	2 %	J 1/2	4 %	5 1/4	
C _{act} (in.)	C _{cr}	12	12	20	20	
()	C _{min}	4	4	4	4	
	f _{cmin}	0.71	0.60	0.36	0.28	
4		0.71	0.60	0.36	0.28	
6		0.78	0.70	0.44	0.37	
8		0.86	0.80	0.52	0.46	
10		0.93	0.90	0.60	0.55	
12		1.00	1.00	0.68	0.64	
14				0.76	0.73	
16				0.84	0.82	
18				0.92	0.91	
20				1.00	1.00	
Spacing) Shear (

3∕8

2 5⁄8

8

4

1.00

1.00

1.00

1.00

1⁄2

3 1/2

8

4

1.00

1.00

1.00

1.00

3∕8

0.5/

1/2

0.1/

Edge or End Distance

Dia.

Г

Dia.

F

Scr

S_{min}

f_{smin}

Sact

(in.)

4

6

8

Shear (f_c)

See page 13 for an explanation of the load table icons

5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.

3⁄4

3⁄4

5 1/4

8

4

1.00

1.00

1.00

1.00

5⁄8

4 3⁄8

8

4

1.00

1.00

1.00

1.00

E 1/

7. Reduction factors for multiple edges or spacings are multiplied together.

6. Multiply the allowable load by the applicable load adjustment factor.

5⁄8

1 9/

See page 13 for an explanation of the load table icons

Mechanical Anchors

Load Adjustment Factors for Carbon-Steel Strong-Bolt® 2 Anchors in Top-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

S_{act} (in.)

4

6

8

How to use these charts:

Spacing Tension (fs)

Sact

(in.)

4

6

8

Dia.

E

Scr

S_{min}

f_{smin}

⅔

2 5⁄8

8

4

1.00

1.00

1.00

1.00

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application

Ĵ

3⁄4

5 1/4

8

4

0.80

0.80

0.90

1.00

♠

5⁄8

4 3/8

8

4

0.86

0.86

0.93

1.00

1⁄2

3 1/2

8

4

0.93

0.93

0.97

1.00

- the embedment (E) at which the anchor is to be installed. 3. Locat
- 4. Loca the edge distance (Cact) or spacing (Sact) at which the anchor is to be in ılled.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

End Distance Tension (f_c)			* End Distan Perpendic	End Distance Shear Perpendicular to Edge (f_c)			* End Distar Shear Para	End Distance Shear Parallel to Edge (\mathfrak{f}_c)			
	Dia.	1⁄2	5⁄8		Dia.	1/2	5⁄8		Dia.	1⁄2	5⁄8
c	E	3 1⁄2	4 3/8	C	E	3 1/2	4 3⁄8	6	E	3 1/2	4 3⁄8
S _{act}	C _{cr}	12	12	C _{act}	C _{cr}	12	12	(in.)	C _{cr}	12	12
(in.)	C _{min}	4	4	(in.)	C _{min}	4	4	()	C _{min}	4	4
	f _{cmin}	1.00	1.00		f _{cmin}	0.90	0.83		f _{cmin}	0.53	0.50
4		1.00	1.00	4		0.90	0.83	4		0.53	0.50
6		1.00	1.00	6		0.93	0.87	6		0.65	0.63
8		1.00	1.00	8		0.95	0.92	8		0.77	0.75
10		1.00	1.00	10		0.98	0.96	10		0.88	0.88
12		1.00	1.00	12		1.00	1.00	12		1.00	1.00
Spacing Tension (f _s)											
	Dia.	1⁄2	5⁄8		Dia.	1/2	5⁄8				
	E	3 1/2	4 3⁄8		E	3 1/2	4 3/8				

8

4

1.00

1.00

1.00

1.00

8

4

1.00

1.00

1.00

1.00

S_{cr}

S_{min}

f_{smin}

S_{act} (in.)

4

6

8

 \bar{S}_{cr}

Smin

f_{smin}

8

4

0.93

0.93

0.97

1.00

8

4

0.86

0.86

0.93

1.00

Dr	۱.	
)		
g	e	