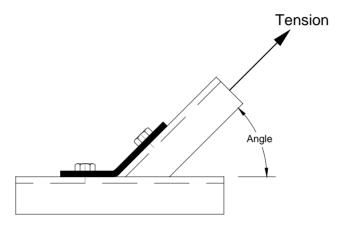


DESIGN LOAD REPORT


Unistrut International 16100 S. Lathrop Ave. Harvey, IL 60426

Phone: 708-339-1610 800-882-5543 Fax: 708-339-7814

www.unistrut.com

Part Description: Angular Fittings P2094 – P2100 & P1546

Report Date: August 29, 2005

Part Number	Angle	Ave. Ultimate Tension (lbs)	Design Tension Load (lbs)	Ave. Deflection at Design Tension Load
P2094	82 ½°	7,000	1,500	0.046"
P2095	75°	7,200	1,500	0.081"
P2096	67 ½°	6,900	1,500	0.046"
P2097	60°	6,500	1,500	0.079"
P2098	52 ½°	6,300	1,500	0.059"
P1546	45°	6,200	1,500	0.081"
P2099	37 ½°	6,800	1,500	0.171"
P2100	37 ½°	5,700	1,500	0.169"

NOTES

- 1. Average Ultimate Loads from Test T-068
- 2. Testing Based on 1/2"-13 Channel Nut & Cap Screw Torqued to 50 ft-lbs
- 3. Average Safety Factor = 4
- 4. Design Loads Limited to 1,500 lbs Slip Load of 1/2"-13 Channel Nuts, SF = 3
- 5. Deflection is the Average of Straight Line Interpolations of the Deflection Readings at 1,000 lbs and 2,000 lbs Tension Load.
- 6. Deflection is Measured In the Direction of the Tension Load

